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1. Intro_duction

Recently, two large, thick composite hybrid panels were processed simultaneously in a large auto-
clave. The resultant parts were checked after cure, and a solvent wipe test performed by the contrac-
tor indicated that the parts did not appear to be fully cured. This was evidenced by residue left on the
cloth believed to be from the matrix material. The resin used in the composites is a siloxane-modified
polycyanurate system that is extremely susceptible to moisture contamination. We have written a
number of reportsl’2 discussing processing issues dealing with this material system and were asked to
evaluate the state of the panels. Each of the panels is 51.0 in. X 24.0 in. The contractor removed
small 2.0 X 1.0 in. sections from the north, south, east, and west portions of each panel. Figure 1
shows a schematic of one of these composite panels. :

# #2

#4 #5

Figure 1.  Schematic of composite panel tested in our investigation along
with location of tag ends used for dynamic mechanical analysis
testing. Gray area denotes problematic portion of laminate (win-
dow frame area) as evidenced by solvent wipe test.




The tag end samples were cut from the actual panels, as shown in Figure 1. The residue is believed to
be concentrated on the outer 2 in. of the sample, similar to a window pane trace. Each of the tag end
samples was tested using dynamic mechanical analysis (DMA). Each of the samples designated 1-6
was tested in two different modes. The entire thickness of the sample was tested, and only the outer
few plies of specimens were also tested. Our previous studies have shown that contamination may be
localized in the few outer plies, and measurements of Tg on the entire samples may be misleading
unless severe degradation has occurred. Either way, if it is a surface effect or the entire sample has
been affected, bonding onto this panel will make it prone to premature mechanical failure.

The objective of this report is to investigate portions of both panels and determine how the cure was
compromised, how far into the panels the affected areas were, and, finally, whether the panels can be

used as-is, or whether portions can be salvaged. The final question is dependent on structural
mechanical data performed by the contractor.




2. Experimental

21 Dynamic Mechanical Analysis (DMA)

A Rheometrics Dynamic Mechanical Analyzer was used to determine the glass-transition temperature
(Tg) of all composite samples. The DMA subjects a sample to cyclic torsional deformations and
quantifies the material response by measuring the shear modulus, G’, the shear loss, G”, and the lag
angle between the applied stress and resulting strain, tan delta, as a function of temperature. In this
report, the peak of the G” curve was used for determination of the Tg values.

Numerous 2.0 x 1.0 inch tag end specimens were cut from the initial two large panels as shown in
Figure 1. The tag ends were removed from the same areas in both panels. One half of the specimen
was tested in the full thickness configuration, while the other was sanded down to the upper surface
20-mil thickness. Samples 1, 3, 5, and 6 were tested in two areas. The samples were further sliced
along the longer dimension, leaving two 0.25 x 2.0 in. specimens from the outer edges. This was per-
formed to identify whether any gradient in Tg exists through the thickness of the sample. Samples 2

and 4 were cut into three specimens moving along the longer 2.0-in. dimension (see Figure 2 for
schematic). :

2.2 Optical Microscopy

Transverse polished cross sections of the tested samples were prepared by mounting the sample in a
room-temperature cured epoxy and grinding and polishing with diamond paste to a 1-xm finish. The
cross sections were examined by optical microscopy with a Nikon Epiphot metallographic micro-
scope equipped with a SONY DXC-107A CCD video camera.
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Figure 2.  Schematic of tag ends prepared for dynamic mechanical testing.
Hashed line region denotes sample area tested. Four segments are
tested for samples 1, 3, 5 and 6. Three samples are obtained for
samples 2 and 4. The longer dimension of each tag end is 2.0 in.,
and the shorter segment is 1.0 in.




2.3 Fourier Transform Infrared Spectroscopy (FTIR)

Microreflectance FTIR was performed using a Perkin Elmer 1310 Fourier Transform Infrared Spec-
trometer. FTIR was performed on both solvent-extracted residue and solid scrapings from the part.
A detailed report discussing all of the variables used to quantify our test method is being prepared.



3. Results

Segments of both panels were investigated using FTIR spectroscopy. Scans indicated that contami-
nation by hydrolysis was evidenced in both samples. Though the degree of hydrolysis could not be
ascertained from FTIR, the mechanism was definitely related to carbamate formation. Dynamic

mechanical analysis (DMA) of the parts to determine the Tg is better suited to evaluate the degree of
contamination.

Figure 3 shows a DMA scan for panel 1. This scan shows the loss modulus as a function of tem-
perature. Typically, the peak value for the loss modulus indicates the Tg. This material should pro-
duce a single loss modulus peak centered at about 170-175°C. As shown, the loss curve appears to
bea corribination of a number of peaks. “This is usually an indication of severe hydrolysis contamina-
tion. As shown, there is a shoulder at 100, a peak at 125, and one at 165°C. This scan describes a
resin system that is not only undercured but has regions cured to varying degrees. In others words,
portions of the network have cured significantly while others are only slightly branched. Upon heat-
treatment exposure, the lower crosslinked areas of the polymer are easily softened and cannot resist
thermal degradation. Not only is this polymer system only partially cured, the hydrolysis of the sys-
tem creates a more linear, less compliant matrix material that is different in chemical structure than
what was intended. This DMA scan indicates serious moisture coontamination. Additional heat
treatments would have no effect on advancing the resin further or improving crosslinking density.
Samples from this panel were placed in a solvent batch for a specific length of time as described in a

previous publication.2 The system was observed to completely dissolve within 5 min. Well-cured
systems will not dissolve, even after exposure up to 5 h. ' ‘
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Figure 3. Typical DMA scan of Panel 1 on the outside edges.




Table 1 shows a compiled list describing the measured Tg values for the many tag end samples from
Panel 1. As shown and described previously, there are a number of multiple Tg values for each tag
end. This indicates severe moisture contamination. Samples 2 and 4 represent areas of the panel
0.05, 1.0, and 2.0 in. from the outer edge. The Tg values increase as the samples move in a few
inches from the outer edges. However, even at a 2.0-in. depth, the resin still appears compromised.

A Tg value of 165°C for this resin has been shown in previous publications to be both mechanically
and thermally affected. Tag-end samples 3, 5, and 6 indicate changes in Tg values from the edge of
the sample to 1.0 in. from the edge into the panel. Again, the values indicate an increase in Tg,
showing improvement, but significantly lower than a well-cured material. The samples (1, 3, 5, and
6) tested laterally around the perimeter of panel 1 were shown to be quite consistent. The entire panel
appeared to be hydrolyzed to the same degree on the outer sections. The Tg data for this panel shows
that this composite was severely affected during cure. Mechanical flatwise tension tests are currently
being performed, and the contractor has stated that preliminary data shows a higher-than-expected
degree of scatter and low strengths. Once the resin becomes hydrolyzed during cure there is no rem-
edy to obtain full cure. The by-products created during hydrolysis prevent a well-crosslinked, fully
cured end product. Multiple peaks in the Tg curves for most tag ends led us to recommend scrapping

the panel. Other issues, such as severe microcracking, thermal expansion coefficients, moisture
absorption and thermal capabilities, will be affected.

Table 2 shows a compiled list describing the Tg values for the tag end samples from Panel 2. As

- shown and in contrast to panel 1, all of the samples for panel 2 had only one single sharp peak for the
loss modulus. The DMA scan shown in Figure 3 shows this loss modulus peak, which represents the
glass-transition temperature of the material. Samples 2 and 4 represent areas of the panel moving in
from the outer edge. As shown, the Tg values show a slight increase in Tg as we move into the bulk
of the panel. The slightly lower Tg on the outer perimeter may be due to some hydrolysis of the
polymer. However, the Tg values are all quite high and above the values that

Table 1. Tg Data for the Tag End Specimens Taken From Panel 1

Sample Number

Through thickness
1 Tg (a-b) = 110,125,161
Tg (c-d) = 110, 125, 165
Tg (a) = 125, 161

Tg (b) = 145, 161
Tg(c) =165

Tg (a-b) = 145,165

Tg (c-d) = 165

Tg (a) = 145, 161

Tg (b) = 155

Tg (c) =165

Width
Tg (a-c) = 110,125, 161
Tg (b-d) = 110, 125, 161

Tg (a-c) = 110,125, 161
Tg (b-d) = 110, 125, 161

Tg (a-b) = 145, 161
Tg (c-d) = 165
Tg (a-b) = 145, 161
Tg (c-d) = 165

Tg (a-c) = 110,125, 161
Tg (b-d) = 110, 125, 161
Tg (a-c) = 110,125, 161
Tg (b-d) =110, 125, 161




Table 2. Tg Data for the Tag End Specimens Taken From Panel 2.

Sample Number Through thickness Width
1 ' Tg (a-b) =170 Tg (a-c) = 170
~ Tg(c-d)=170 Tg (b-d) = 171
2 ‘ Tg (a) = 169.9
Tg () =170
Tg (c) =170.9
-3 . Tg (a-b) = 169 Tg (a-¢c) = 170
. Tg (c-d) =170 Tg (b-d) = 169.9
4 Tg (a) =170
Tg (b) =172
Tg(c)=172 ]
5 Tg (a-b) =169 . Tg (a-c) =171
Tg (c-d) =170 Tg (b-d) = 171
6 : . Tg(ab)=170 Tg (a-c) = 170.7
' Tg (c-d) = 171 Tg (b-d) = 170.0
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Figure 4. Typical DMA scan of Panel 2 on the outside edges.

are indicative of a well-cured system. The other Tg values taken from the tag ends around the
perimeter of the panel indicate minimal changes and that full cure has occurred. The overall cure
state of Panel 2 appears to be sound. It is quite surprising that the state of Panel 1 is so degraded in
comparison to Panel 2 since both panels were processed simultaneously.

Fourier Transform Infrared (FTIR) spectroscopy was also performed to evaluate the degree of cure of
the resin as well as to determine whether any contamination had occurred. Figure 5 shows a typical
scan for the resin used in these composites as a function of heat-treatment temperature. There are
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Figure 5. FTIR Spectra for typical siloxane modified cyanate ester resin.

three main areas of importance, as shown in the scans. The characteristic absorption bands of the
cyanate ester groups are observed in the infrared spectrum between 2200 to 2300 cm™’. The band is
usually split into a doublet or triplet, depending on the chemical environment of the cyanate. Moni-
toring the disappearance of the cyanate ester absorbance bands can follow the polymerization of the
resin. Even though this is generally a very good indicator of the degree of the initial stages of cure,
identifyin% variations at higher degrees of cure is more difficult. A second set of peaks at 1560 and
1360 cm ~ reflects the absorption for the formation of the triazine ring as shown in Figure 6. The tri-
azine ring is the primary polymerization route for this resin system. As this peak increases, the
degree of cure increases; this is especially evident during the later stages of cure. Figure 6 shows an
FTIR scan for the resin used in these composites as a function of the degree of cure. As shown from
the figure, the polymerization can be followed quite readily for this system, especially at 1560 cm™L.

The third peak to focus on is located at approximately 1750 em™. Thisisa carbonyl peak that is usu-
ally indicative of hydrolysis of the cyanate ester occurring during the polymerization process. This
type of carbamate contamination is the primary cause for large variations or decreases in the glass-

transition temperature of the resin, even after heat treatment to high temperature. Figure 7 shows a
typical FTIR with limited contamination.

In parts from both composite panels evaluated, the cyanate peak at 2250 cm™ was completely con-
sumed. This is typical in samples that are cured over 70% unless there has been moisture contamina-
tion. In those cases, the cyanate peak can be completely consumed due to hydrolysis with a limited
degree of polymerization. The degree of cure was further evaluated, normalizing the peak located at
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1560 cm™ for all parts taken from Panel 1 and Panel 2. Panel 2 appeared fully cured for all speci-
mens and showed no evidence of hydrolysis contamination, which corroborates our measured Tg
data. Panel 1, however, indicated a composite part that ranged in the degree of cure from 70 to 90%,
depending on the location measured. The areas with the lowest degree of cure showed indications of
carbamate formation. Even though by-products of hydrolysis were observed, the degree could not be
easily quantified due to the convoluted nature of the peak.

At this time, we don’t know whether both panels were fabricated using the same lots of material.
Flatwise tension tests should still be performed to ensure that good consolidation of the panel has
occurred; however, the cure state is satisfactory, and we see no reason to discard Panel 2. To assure

highest reliability, Panel 2 should be machined 1.0 in. from the outer perimeter to remove any con-
taminated material.




4. Conclusions

Samples from two large composite panels were tested using dynamic mechanical analysis
(DMA) to evaluate their cure state. Solvent wipe tests by the contractor indicated partial
cure of the resin used after final processing. Tag end segments were cut in areas sus-
pected of partial cure and analyzed using FTIR, DMA, and solvent exposure tests.

Panel 1 exhibited areas of severe hydrolysis that may have occurred during processing.
Multiple peaks in the modulus curve indicated that the panel had areas with several glass-
transition temperatures (Tg). Tg measurements of tag ends showed that the Tg of the
panel increased as measurements were taken inward from the outer perimeter. However,
the Tg values remained considerably below values indicative of full cure.

Dynamic mechanical analysis of Pahel 2 ihdicated that negligible contamination due to
hydrolysis had occurred. The Tg values 1.0 in. in from the outer edge are representative
of well-cured systems for this type of resin.

We do not recommend using Panel 1 due to the severe degree of contamination that has
occurred to the composite. Bonding to the surface of the composite may greatly affect
mechanical performance. However, Panel 2 appears to be fairly well cured, especially
1.0 in. in from the outer perimeter. Panel 2 appears satisfactory for use with respect to its
degree of cure. Additional, flatwise tension tests should be performed to evaluate vari-
ability and strength.
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